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1 Threat Strategies and Nash Bargaining in Cooperative
Games

1.1 Threat strategies in games with transferable utility

Players negotiate a joint strategy and a side payment. Since they are rational, they will
agree to play a Pareto optimal payoff vector. Why? Players might make threats (and
counter-threats) to justify their desired payoff vectors. If an agreement is not reached,
they could carry out their threats. But reaching an agreement gives higher utility, so the
threats are only relevant to choosing a reasonable side payment

Since players are rational, they will play on the Pareto set, which is defined by the
payoff vectors with the largest total payoff,

σ := max
i,j

(ai,j + bi,j).

They agree on a cooperative strategy (i0, j0) that has ai0,j0 + bi0,j0 = σ.
The players will agree on a final payoff vector (a∗, b∗) = (ai0,j0 − p, bi0,j0 + p), where

p is the side payment from Player 1 to Player 2. To arrive at (a∗, b∗), the players agree
on threat strategies (x, y) ∈ ∆n × ∆n. We will explore how they decide on their threat
strategies after we’ve seen how threat strategies and the final payoff vector are related.
The threat strategies give a certain payoff vector, called the disagreement point,

d = (d1, d2) := (x>Ay, x>By).

Neither player will accept less than their disagreement point payoff. This defines a subset
of the Pareto boundary: (d1, σ − d1) to (σ − d2, d2). The other details of the game are
now irrelevant, so it’s reasonable to choose the symmetric solution, the midpoint of this
interval:

(a∗, b∗) =

(
σ − d2 + d1

2
,
σ − d1 + d2

2

)
.
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Now that we know the role of the disagreement point, we can see how the players
should choose it. Player 1 wants to choose a threat strategy x to maximize (σ−d2 +d1)/2,
and Player 2 wants to choose a threat strategy y to maximize (σ − d1 + d2)/2, where
(d1, d2) = (x>Ay, x>By). This is equivalent to a zero-sum game, with payoff d1 − d2 for
Player 1 and payoff d2 − d1 for Player 2:

d1 − d2 = x>Ay − x>By = x>(A−B)y.

Suppose x∗ and y∗ are the optimal strategies for this zero-sum game with value

δ = (x∗)>(A−B)y∗.

Then Player 1’s best threat strategy is x∗, Player 2’s best threat strategy is y∗, and the
disagreement point is

d = (d1, d2) = ((x∗)>Ay∗, (x∗)>By∗).

The final payoff vector is

(a∗, b∗) =

(
σ + δ

2
,
σ − δ

2

)
.

So Player 1 pays Player 2 ai0,j0 − (σ + δ)/2.

Example 1.1. Consider a game with the following payoff bimatrix.(
(2, 2) (6, 2) (1, 2)
(4, 3) (3, 6) (5, 5)

)
.

The payoff matrix for the zero-sum game of the disagreement points is(
0 4 −1
1 −3 0

)
.
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The cooperative strategy should be (2, 3), which gives payoff σ = 10. When we solve
the zero-sum game, column 1 is dominated by column 3, so we get x∗ = (3/8, 5/8) and
y∗ = (0, 1/8, 7/8). The value is δ = −3/8. The disagreement point is (3.58, 3.95), and the
final payoff vector is (4.8, 5.2). So Player 1 should pay 0.2 to Player 2.

What if two cooperative strategies are optimal? Any choice gives the same Pareto
boundary. They give different disagreement points, but the value of the zero sum game
(d1 − d2) must be the same. So the payment will depend on the choice of cooperative
strategy, but the final payoff vector will be the same.

1.2 Nash bargaining model for nontransferable utility games

In general, what are the ingredients of a bargaining problem? Suppose we have a compact,
convex feasible set S ⊆ R2 and a disagreement point d = (d1, d2) ∈ R2. Think of the
disagreement point as the utility that the players get from walking away and not playing
the game. We’ll assume every x ∈ S has x1 ≥ d1 and x2 ≥ d2, with strict inequalities for
some x ∈ S.

Definition 1.1. A solution to a bargaining problem is a function F that takes a feasible
set S and a disagreement point d and returns an agreement point a = (a1, a2) ∈ S.

Here are Nash’s axioms for a bargaining problem:

1. Pareto optimality: The agreement point shouldn’t be dominated by another point
for both players.

2. Symmetry: This is about fairness: if nothing distinguishes the players, the solution
should be similarly symmetric.

3. Affine covariance: Changing the units (or a constant offset) of the utilities should
not affect the outcome of bargaining.

4. Independence of irrelevant attributes: This assumes that all of the threats the players
might make have been accounted for in the disagreement point.

More formally, these are

1. Pareto optimality: the only feasible payoff vector (v1, v2) with v1 ≥ a1 and v2 ≥ a2
is (v1, v2) = (a1, a2).

2. Symmetry: If (x, y) ∈ S =⇒ (y, x) ∈ S and d1 = d2, then a1 = a2.

3. Affine covariance: For any affine transformation ψ(x1, x2) = (α1x1 − β1, α2x2 + β2)
with α1 > 0 and α2 > 0, for any S, and for any d, F (ψ(S), ψ(d)) = ψ(F (S, d)).
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4. Independence of irrelevant attributes: For two bargaining problems (R, d) and (S, d),
if R ⊆ S and F (S, d) ∈ R, then F (R, d) = F (S, d).

Theorem 1.1. There is a unique function F satisfying Nash’s bargaining axioms. It is the
function that takes S and d and returns the unique solution to the optimization problem

max
x1,x2

(x1 − d1)(x2 − d2)

subject to the constraints

x1 ≥ d1
x2 ≥ d2
(x1, x2) ∈ S.
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